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Abstract. The antiferromagnetic the-state Potts model on the simple-cubic lattice is studied 
using Monte Carlo simulations. The ordering in a medium temperature mge below the critical 
point is investigated in detail. Two different regimes have been observed: the socalled broken 
sublattice-symmetry phase dominates at sufficiently low temperatures. while the phase just below 
the critical paint is chancterized by an effectively continuous order parameter and by a fully 
restored rotational symmetry. However, the latter phase is not the permutationally sublattice 
symmevic phase recently predicted by the cluster variation method. 

. 

1. Introduction 

The properties of the three-dimensional antiferromagnetic three-state Potts model have been 
investigated intensively over 15 years, but complete understanding of its low-temperature 
behaviour is still missing. There have been disputes about its universality class as well as 
about the type of the low-temperature ordering. Let us review the most important works 
briefly. In 1980, Berker and Kadanoff [l] suggested that the low-temperatwe phase of 
the present model shows algebraically decaying correlation. Banavar er al [2,31 used the 
Monte Carlo simulation to study the ordering in various Potts models. They observed the 
so-called broken-sublattice-symmetry (BSS) phase, and conjectured that the model under 
discussion belongs to the universality class of the X Y  model. Ono [4] concluded that 
there is no spontaneous magnetization at low temperatures, but a ‘Kosterlitz-Thouless 
phase’ exists below the critical point. On the other hand, Ueno [SI observed a non-zero 
magnetization and suggested that the model belongs to a new universality class. Wang et a1 
[6,7] obtained critical exponents quite close to those of the XY model, and they also found 
a non-vanishing magnetization. Interestingly, they observed a divergent susceptibility even 
below the critical point (at T - O.68Tc), indicating that the ordered phase is characterized 
by algebraically decaying correlations. In 1992, Okabe and Kikuchi [8,9] measured the 
probability dishibution of the magnetization closely below the critical point, and they 
interpreted their results as evidence of the BSS phase. Recently, Rosengren and Lapinskas 
[lo] investigated the Blume-Emery-Griffiths model using the cluster variation method, and 
they arrived at very interesting implications for the antiferromagnetic Potts model. They 
argued that the BSS phase exists only at low temperatures, while there is a new, so-called 
permutationally-symmetric sublattices (PSS) phase in a narrow region just below the critical 
point. They found two new phase transitions between the Pss  and BSS phases together with 
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an extremely nmow ferrimagnetic phase between the transitions. Ueno [ l l ]  later argued 
that the low-temperature phase should be characterized as an incompletely ordered phase, 
and that it is not compatible with the X Y  universality class. However, in an extensive 
Monte Carlo study, Gottlob and Hasenbusch 112,131 obtained very accurate estimates of 
critical exponents indicating the XY universality class. Gottlob and Hasenbusch also studied 
the probability distribution of magnetization, and they found that it becomes rotationally 
symmetric when the system approaches its critical point. Their results were corroborated 
also by our recent calculations [14] based on the coherent-anomaly method (see e.g. review 
in [15]). 

While the issue of the universality class seems to be resolved quite convincingly by 
Gottlob and Hasenbusch, there is still a surprising amount of disagreement about the type 
of the ordered phase. The motivation of the present work is to contribute to the solution of 
this interesting problem. Thus, we aim at revealing the nature of the ordering in the region 
in which Wang et a1 observed the divergent susceptibility, and in which the new phase 
transitions were predicted by Rosengren and Lapinskas. We try to answer the following 
questions: Is there a region with the PSS phase? If there is not, then does the BSS phase 
span the whole temperature region below the critical point? 

The layout of the remainder of the present paper is as follows. In order to fix the 
notation, we describe the model and its order parameters in the next section. We also give the 
characteristics of various phases which we expected to see in our simulations. Monte Carlo 
simulations are described in section 3, and the results are discussed in section 4. Finally, 
we give some remarks concerning possible alternative interpretations in the conclusion. 

M Kolesik and M Suzuki 

2. Order parameters 

The Hamiltonian of the Pot& model is written as 

where the summation runs over all nearest-neighbour pairs on the cubic lattice, and the 
spin variables si take on three different values, say (1 ,2,3) .  In what follows, we put the 
interaction J equal to unity, and K stands for the inverse temperature. 

Let us denote by cy and cp the concentrations of those spins located on the sublattice a 
and b, respectively, which are in the state i. The concentrations cptb are constrained by 

and we use the following parametrization which takes into account the threefold symmetry 
of the model 

cy = 113 + 2/3r, cos(& - tcr.) 
cf  = 113 + 213i-b COS(6b - ~ r i )  with ~ 1 . 2 . 3  = 0, +21z/3, - 2 ~ 1 3 .  (3) 

Each couple of (r,, &] and (rb, o b ]  denote the polar coordinates of each vector r, and r b  
in  the plane. We call them sublattice magnetizations or order parameters. Their allowed 
values fall within the equilateral triangle which is centred at the origin and has one of its 
vertices at the location [1,0] (see figure 1). We also use the magnetization, which we define 
as the sublattice difference 

m=r,--rh m=lml  (4) 
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Figure 1. The instantaneous sublanice magnetization recorded during the simulation NUS on 
the lattice of the linear size L = 48 at two different inverse temperatures K. Note that the 
probability distribution at the lower temperature is accumulated in the vicinity of the six points 
corresponding to the six different BSS phases (two of them are indicated by arrows), and the 
occurrence of the Pss-like configurations (again. two of the locations are indicated by arrows) is 
strongly suppressed. On the other hand, at higher temperatures, the probability is nearly constant 
along the whole 'cun'e'. 

Some items are shown to make the notation in the text clear. The triangle is the boundary 
of the allowed region for the sublattice magnetizations. Sublanice magnetizations T~ and ~b 
together with the resulting magnetidon m are shown in a typical Pss-like configuration. The 
spin concentmtiana (cj) corresponding to a point within the triangle are given as its projections 
onto the ci axes which have their origins in the middles of sides of the triangle. The vertices of 
the triangle would represent the fully ordered sublattices. 

and denote by 
Let us describe various phases in terms of the above order parameters. Naturally, we 

have vanishing sublattice magnetizations re, rb at sufficiently high temperatures. Thus, the 
centre of the allowed triangle represents the disordered phase. 

Furthermore, we expect to observe the broken sublattice symmetry (BSS) phase at very 
low~temperatures. In such a phase, one of the sublattices is populated predominantly by one 
of the three Potts states, while the second sublattice is populated mainly by the remaining 
two states. There are six different Bss phases related by permutations of the three spin 
states. The angles @u,b and the magnetization angle @"as can have (or should be close to, 
on finite lattices) only 'nice' values, namely k z / 3  with k = 0, 1, . . . ,5, and the radii r. and 
rb are not equal: 

r, # rb &, = k n / 3  @b = f R and &,as = k n / 3  
(5) 

The locations corresponding to the states of the two sublattices are near the vertices of the 
allowed triangle, and in the vicinity of the middles of its sides, respectively (see figure 1). 

Let us characterize the permutationally-symmetric sublattices phase (PSS) proposed by 
Rosengren and Lapinskas [IO]. In this phase, the concentrations of the spin states on one 

the angle describing its direction. 

with k =0, 1. ..., 5. 
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sublattice are the same as the concentrations on the second sublattice, but the maximal and 
minimal concentrations are exchanged. There are again six PSS phases, but this time there 
are no special values for the angles h . 6 :  the angle between T. and ~b is somewhat less 
then A. On the other hand, the radii r, and rb are equal, and the magnetization angle 
takes on special values: 

ra = rb @a - (#)h and &mag = (k/3 + 1/’& 

M Kolesik and M Suzuki 

with k = 0.1, . . . , 5 .  (6) 

3. Monte Carlo simulations 

Note that if we want to distinguish between the Bss and Pss phases, then the magnetization 
m or even its absolute value in are not very useful quantities, because they are very similar 
in both phases. Consequently, we have to concentrate on the difference r, - rb which is 
equal to zero in the PSS phase while it remains finite in the BSS phase. We also want to 
see what are ‘allowed‘ values for the angles &, &, and &,my. Our strategy is to sample the 
probability distributions for interesting quantities, and to investigate the finite-size effects 
in order to determine the type of ordering. 

Because the interplay between the two sublattices is crucial in the present model, we 
have carried out the summation over the spin-states on one of them. Then, we simulated the 
resulting model with multispin interactions. The rationale behind this choice of simulation 
algorithm was twofold. First, in the simulations by Wang et a1 [7] the cluster-algorithm 
performance was much worse in the ordered phase than right at he  critical point. Second, 
we have observed in our previous multilattice microcanonical simulations that the inter- 
sublattice relaxation was very slow in the medium temperature range. In contrast, the 
sublattices are always in a ‘mutual equilibrium’ within the present approach. 

We have simulated cubic lattices with the linear sizes L = 8, 16, 24, 32, 40, 48 and 64 
at several inverse temperatures within the relevant region, namely at K = 0.9, 1.0, 1.1, 1.2, 
1.3, 1.4 and 2.0. Each run consisted of lo5 sweeps for thermalization and lo6 sweeps for 
measurements with data collected at every 10th and every 100th step for various probability 
distributions and other order parameters, respectively. 

4. Simulation results and interpretation 

4.1. Ordering in the r,,h-plane 

Figure 1 shows the instantaneous sublattice magnetizations recorded during the runs at 
two different temperatures. The probability distribution of the sublattice magnetization is 
localized along a closed curve at both temperatures. But one can see that at the lower 
temperature, K = 1.4, this probability concentrates near the points characteristic for the 
BSS phase. At the same time, the occurzence of the Pss-like states is very improbable. This 
difference becomes increasingly pronounced as the lattice size increases, and one expects 
that the probability distribution would converge to the six delta functions located near the 
vertices andlor near the side centres of the allowed triangle. On the other hand, at the higher 
temperature, K = 1.0, the Pss-like configurations seem to be equally probable as the BSS- 
like configurations are. Note that K = 1.0 is already in the region in which Rosengren and 
Lapinskas found the Pss phase [lo]. Here we see that the Pss-like configurations evidently 
play an important role, but they do not seem to suppress the BSS-like states. 

Figure 2 presents the results of the same measurements as figure 1 but viewed in 
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Figure 2. The instantaneous sublattice angles @a and @b recorded as in figure 1. Only one 
half of the probability-distribution locus is shown (note that it is symmetric with respect to the 
reflection @a +f @b as well as with r e s p t  to the translation @ + @ + 2 1 3 ~ ) .  The locations of 
the BSS- and Pss-like Configurations are shown. At lower temperatures, the PSS configurations 
have a very small probability to be observed, while at K = 1.0, the probability distribution does 
not vary along the curve. The shap of probability distribution l m  is determined by the loml 
interactions as is explained in the conclusion. 

the +a - &-plane. Again, we see the tendency towards the sss-type ordering at low 
temperatures, while there are no clearly dominant configurations at higher temperatures. 

Now, we face the question what does this observation mean. Is it merely an extremely 
pronounced size effect, or are there two different ordered phases? In order to see the low- 
temperature behaviour in a more quantitative way, we have measured several histograms 
which we describe below. 

4.2. Probability distribution of the Ira - rbl 

We have measured the probability 'distribution of the radii difference Ira - rbl at several 
temperatures in an attempt to observe the PSS phase. Let us recall that this probability should 
be accumulated around Ir, - rb [  = 0 in the Pss phase (see (2)). In the BSS phase, one should 
observe a peak centred at a finite, temperaturedependent value of the Ira -rbl (see (2)). One 
can see a clear tendency towards the sss-type ordering at low temperatures in figure 3, but 
in the medium temperature region K < 1.0, the probability of the Pss-like configurations 
with Ira - rbl = 0 does not seem to converge to zero as the lattice size increases. At 
the same time, we still see a strong peak corresponding to 6s-like configurations. Such 
behaviour is not compatible with the pss phase proposed by Rosengren and Lapinskas, but 
it shows that something interesting is going on. 

4.3. Probability distribution of the 16" - @bl 

Clearly, we need some quantity which is more sensitive to the finite-size effects to look 
closely at the crossover region between the two regimes. We want to find out whether 
the probability distribution goes to some delta function(s) in the thermodynqic limit, or 
whether it remains accumulated along the whole closed curve in the order-parameter space 
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Figure 3. The probability distributions for the absolute value of the difference ra -rb measured 
for various lattice sizes and at different inverse tempera”: (a) K = 1.0, (b) K = 1.2, (c) 
K = 1.4. The region around the origin corresponds to the PSS-like configurations, and the peaks 
at ‘maximal values’ represent the Bss-like configurations. At the lowest temperature (c ) ,  one 
can see that the probability distribution tends to a single pe& with the increasing lattice size L. 
It is expected to converge to a delta function located at a finite, temperature-dependent value of 
Ir. -rbl. At the medium temperature (b), the suppression of the probability at the origin is still 
discernible, but at the highest temperature (a), we do not observe the suppression of the Pss-like 
configurations any more. This suggests that in the L -, m limit we would obtain a probability 
distribution which is non-zem on an intwal (0, Arm-) and divergent at Arm=. 

even for L -+ CO. This is why we have measured the distribution of the I]@= - @bl --nl. If 
the system tends to the BSS phase in the thermodynamic limit, then this distribution should 
converge to a delta function located at zero (see (2)). On the other hand, if the probability 
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of the Pss-like configurations remains finite for arbitrarily large lattices, then we should 
observe a growing peak localized at the 'maximal' (again temperature-dependent) value of 
the- I[& - &  --RI (see (2)). Indeed, we see pronounced size effects in figure 4. The Pss-like 
peak is strongly suppressed on larger lattices at low-temperatures. However,  it seems to 
survive for K 6 1.0. This suggests that we really do have two different regimes. Let us 
look at the finite-size effects more closely. In figure 5 we have given the height of the 
Pss-like peak for various lattices and temperatures. At lower temperatures, its height first 
increases and then decreases as the lattice size increases. The position of the maximum is 
shifted to larger lattice sizes as the temperature rises. Only for K < 1 .O we have not seen 
the maximum, but the peak grows even on a lattice as large as L = 64. This behaviour 
can be understood easily, at least qualitatively, as the result of two 'competing effects. The 
first is the growth of the Pss-like peak caused by the decreasing width of the probability 
 distribution in the angleangle space. The second effect is the suppression of the Pss-lie 
configurations which becomes discernible on larger lattices. This is why one expects the 
behaviour of the PSS-peak height to be qualitatively described by 

height - L" exp(-SLP). (7) 
The first factor corresponds to the narrowing of the distribution width and its exponent U 
is determined by the behaviour of the corresponding susceptibility. The exponential factor 
in (4.3) describes the suppression of the pss-like configurations. To determine the exponent 
p we have to take into account the following important fact. The pss-like configurations 
observed in our simulations are homogeneous, meaning that they are not configurations with 
an interface, or twisted configurations. We have observed that one can detect the Pss-like 
configurations even locally by looking at small sections of the lattice. This implies p = 3 
with the parameter 6 being the difference between the free energies corresponding to BSS- 
and pss-like configurations. We have fitted formula (4.3) with p = 3 to the data shown in 
figure 5, and obtained a good agreement. We must siress that the resulting values of the 
free energy difference S cannot be taken too seriously, because the values of the exponent 
U cannot be determined very accurately. Nevertheless, it turns out that the size dependence 
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Figure 4. The probability distribution for the I[& - d,,[ - nl on various latices and at ulree 
different temperatures: (a) K = 1.0, (b) K = 1.2, (c) K = 1.4. This is a complementary 
picture compared to figure 3: the peaks a the maximal values are due to Pss-like configurations, 
and the sss-configurations are seen at the oripin. The Pss-like configurations die out at lower 
temperatures as the lattice size increases. and the probability distribution forms a peak located 
at the origin; this is a pure BSS phase. At higher temperatures, both the BSS- and Pss-like 
configurations x e  relevant. 

of the Pss-peak height at T = 1.0 is fully compatible with a pure power law, and that it 
increases approximately linearly with the lattice size for K = 0.9. This indicates that the 
Pss-like configurations are not suppressed any more in this temperature region. 
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Figure 5. The lattice size dependence of the Pss-peak height in the probability distribution of 
the [I@" -@,,I --XI. The lines correspond to the fits obtained from (7) by adjusting S(T) and U. 
The exponent v appears io be near 0.5 for K > 1.0, and 6 rapidly decreases as K + 1.0. The 
data are compatible with 6 = 0 for K < 1.0. 

4.4. Alternative order parameter 

In order to remove the first of the two finite-size effects mentioned above namely the effect 
of the decreasing width of the order-parameter probability distribution, which is not of 
interest now, we have measured the order parameter related to the magnetization angle: 

a = (cos(6Adp)). (8) 
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Let us recall that the values of expected in the BSS and PSs phases are k r / 3  and 
( k / 3  + 1/2)x, respectively. Thus, the parameter a equals one in the BSS phase, while 
it would be -1 in the PSS phase. More precisely, it measures the deviation from the 
perfect rotational symmetry of the magnetization probability distribution. In a rotationally 
symmetric phase one has a = 0. We call it the asymmetry parameter. 

Let us estimate, at least roughly, the finite-size effects for this parameter. For this 
purpose, we introduce the restricted partition function 

M Kolesik and M Suzuki 

z L ( @ l . h )  = exp(-P4(4I9 = exp(-BH) (9) 
$m&w, ,421 

with the summation running only over the configurations which have the magnetization 
angle in the interval ($1, $2). Then, the asymmetry order parameter can be formally 
expressed as 

Our simulations indicate that, in the medium temperature’region, the restricted free energy 
FL($, $+d$) becomes extremely flat as a function of the magnetization angle When 
the free energies of the %is-like and pss-like stam are close to each other, then the variation 
of FI. is expected to behave as AL3 cos(64) as a consequence of the model symmetry. From 
this follows the expression in terms of the Bessel functions 

Q ( L )  = I ~ A L ~ ) / I ~ ( A L ~ ) .  (11) 

Here, the freeenergy difference A is essentially the same quantity as 6 in formula (4.3) and 
is supposed to exhibit only a weak size dependence. 

Figure 6. The lattice-size dependence of the asymmetry parameter a for several inverse 
temperatures. The meassured data were divided into 5 (IO) bins, and the error bars represent the 
deviations of the resulting mem values. The lines show the fits obtained from the finite-size 
scaling formula (1 I). 
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Figure 6 shows the lattice size dependence of the asymmetry Q for various temperatures 
together with the fits obtained from (4.4) by adjusting A. One can see that the agreement is 
reasonable. The free-energy difference A decreases rapidly as the temperature rises towards 
T - 1.0; we have obtained the values 3.1 x IO-", 3.3 x 1.6 x IO", 5.5 x low6, 
2.1 x for the inverse temperatures K = 2.0, 1.4, 1.3, 1.2, 1.1, respectively. With 
our data, A is indistinguishable from zero for K = 1.0 and K = 0.9. This i s ~ a  strong 
indication that the region below T - 1.0 is the BSS phase, while there is another ordered 
phase for T > 1.0 which is rotationally symmetric. In the latter, all the states in which the 
magnetization points in an i rb i t rq  direction but have the same absolute value, are equally 
probable. Unfortunately our data are by far insufficient to locate the transition precisely. 
We can give only a rough estimate that it is located close below T = 1.0. This is also seen 
in figure 7, which presents the asymmetry temperature dependence for different lattices. We 
observe that Q is nearly equal to one for large lattices and at low temperatures, and drops 
suddenly to a value which we are not able to distinguish from zero at temperatures T 2 1.0. 

0.4 0.6 0.8 1.0 12 

Figure 7. The parameter a as a function of the temperature. The lines are merely a guide 
for eyes. and were calculated using the finite-si% scaling formula (11) with the freeenergy 
difference A approximated by a polynomial interpolation of the values measured at simulation 
temperatures. It is Seen from this picture t h t  the transition temperature between the BSS- and 
the rotationally symmetric phases is probably close to T = 1.0. The critical point Tc between 
the ordered and disordered phases is also shown. 

5. Conclusion 

In conclusion, our Monte Carlo simulations provide a strong indication that there are two 
different ordered phases below the critical point in the model under investigation. The very 
low-temperature phase is the expected broken-sublattices symmetry (BSS) phase. In the 
medium temperature region T E (-- 1.0, T, = 1.2215.. .), we have observed a phase, in 
which the magnetization probability distribution acquires a full rotational symmetry, (PsS) 
phase. The transition temperature between the two regimes is probably close below T = 1.0. 

At the present stage we also cannot rule out the scenario in which the difference between 
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the free energies of the Bss and Pss phases vanishes only at the critical point, and is extremely 
small within the whole medium temperature region. Unfortunately, very long simulations 
on very large lattices would be needed to discriminate between the two possibilities. The 
problem is that the parameter U ,  which is probably the most sensitive quantity with which 
to measure the deviations from the rotational symmetry of the magnetization distribution, 
is very difficult to measure accurately, because its correlation time is related to the ‘ergodic 
time’ which the system needs to accomplish a full rotation in the order-parameter space. At 
present it is not clear to us .which would be the best way to discriminate between the two 
scenarios and, possibly, to locate the phase transition accurately. 

We would like to make several remarks concerning the ordering at low temperature$ 
and relate our observations to previous results. 

It is interesting to observe that the measured values of the order parameters are localized 
along definite curves (see figure 2). However, it is not difficult to explain their origin 
qualitatively. Lei us consider a spin together with its six neighbours. There are Z6 different 
configurations of the neighbouring spins. For each such configuration we can calculate the 
probability distribution for the spin at the centre; it represents a point in the order parameter 
space, and we can observe that these points are localized along the curves found in the 
simulations. This tells us that the shape of the probability-distribution Iocus is determined 
mainly by tbe local interaction. 

The second remark concerns previous studies by Wang et 01 171 in which they observed 
a divergent susceptibility related to the width of the distribution of the absolute value 
of the magnetization. They found that it diverges linearly with the lattice size at the 
temperature T = 0.68Tc. We have also measured this susceptibility. Our results confirmed 
the observation by Wang etul in the sense that the susceptibility is divergent. Nevertheless, 
we observed that the rate of divergence is dependent on the temperature. We have found a 
linear increase at 1/T = 1.2 which is very close to the above T = 0.68Tc, but the increase 
is sub- (super) linear for higher (lower) temperatures. Similarly, the behaviour of the PSS- 
like peak i n  the probability distribution of the angle difference is an indirect evidence that 
the corresponding susceptibility diverges. 

It is also worth making the following remark concerning the results of the mean-field 
type methods such as the cluster variation method used by Rosengren and Lapinskas [lo] or 
the variational series expansion approach applied in our recent study [14]. These approaches 
give the ‘right answer’ in a sense, namely that the free energies of the Bss and Pss phases 
are very similar. However, the sign of the very small relative difference calculated by 
such an approximation need not necessarily correspond to reality. Therefore, we should be 
careful about drawing conclusions regarding the phase diagram based on mean-field type 
methods, especially in this peculiar region of the Potts model. 
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